3D Bioplotter Research Papers

Displaying all papers by Y. Piñeiro-Redondo (2 results)

Hyperthermia Induced in Magnetic Scaffolds for Bone Tissue Engineering

IEEE Transactions on Magnetics 2014 Volume 50, Issue 11, Pages 1-7

The design and fabrication of advanced biocompatible and bioresorbable materials able to mimic the natural tissues present in the human body constitutes an important challenge in regenerative medicine. The size-dependent properties that materials exhibit at the nanoscale as a consequence of their higher surface-to-volume ratio have opened a wide range of opportunities for applications in almost every imaginable field. In this regard, the incorporation of magnetic nanoparticles (MNPs) into biocompatible scaffold formulations provides final materials with additional multifunctionality and reinforced mechanical properties for bone tissue engineering applications. In addition to the biological implications due to their magnetic character (i.e., magnetic…

Poly (caprolactone) based magnetic scaffolds for bone tissue engineering

Journal of Applied Physics 2011 Volume 109, Issue 7, 07B313

Synthetic scaffolds for tissue engineering coupled to stem cells represent a promising approach aiming to promote the regeneration of large defects of damaged tissues or organs. Magnetic nanocomposites formed by a biodegradable poly(caprolactone) (PCL) matrix and superparamagneticiron doped hydroxyapatite (FeHA) nanoparticles at different PCL/FeHA compositions have been successfully prototyped, layer on layer, through 3D bioplotting. Magnetic measurements, mechanical testing, and imaging were carried out to calibrate both model and technological processing in the magnetized scaffold prototyping. An amount of 10% w/w of magnetic FeHA nanoparticles represents a reinforcement for PCL matrix, however, a reduction of strain at failure is also…